Schubert$72671$ - vertaling naar Engels
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Schubert$72671$ - vertaling naar Engels

Schubert cell; Schubert cycle; Schubert varieties

Schubert      
n. Schubert (Franz, compositore austriaco)

Definitie

Relique
·noun ·see Relic.

Wikipedia

Schubert variety

In algebraic geometry, a Schubert variety is a certain subvariety of a Grassmannian, usually with singular points. Like a Grassmannian, it is a kind of moduli space, whose points correspond to certain kinds of subspaces V, specified using linear algebra, inside a fixed vector subspace W. Here W may be a vector space over an arbitrary field, though most commonly over the complex numbers.

A typical example is the set X whose points correspond to those 2-dimensional subspaces V of a 4-dimensional vector space W, such that V non-trivially intersects a fixed (reference) 2-dimensional subspace W2:

X   =   { V W dim ( V ) = 2 , dim ( V W 2 ) 1 } . {\displaystyle X\ =\ \{V\subset W\mid \dim(V)=2,\,\dim(V\cap W_{2})\geq 1\}.}

Over the real number field, this can be pictured in usual xyz-space as follows. Replacing subspaces with their corresponding projective spaces, and intersecting with an affine coordinate patch of P ( W ) {\displaystyle \mathbb {P} (W)} , we obtain an open subset X° ⊂ X. This is isomorphic to the set of all lines L (not necessarily through the origin) which meet the x-axis. Each such line L corresponds to a point of X°, and continuously moving L in space (while keeping contact with the x-axis) corresponds to a curve in X°. Since there are three degrees of freedom in moving L (moving the point on the x-axis, rotating, and tilting), X is a three-dimensional real algebraic variety. However, when L is equal to the x-axis, it can be rotated or tilted around any point on the axis, and this excess of possible motions makes L a singular point of X.

More generally, a Schubert variety is defined by specifying the minimal dimension of intersection between a k-dimensional V with each of the spaces in a fixed reference flag W 1 W 2 W n = W {\displaystyle W_{1}\subset W_{2}\subset \cdots \subset W_{n}=W} , where dim W j = j {\displaystyle \dim W_{j}=j} . (In the example above, this would mean requiring certain intersections of the line L with the x-axis and the xy-plane.)

In even greater generality, given a semisimple algebraic group G with a Borel subgroup B and a standard parabolic subgroup P, it is known that the homogeneous space X = G/P, which is an example of a flag variety, consists of finitely many B-orbits that may be parametrized by certain elements of the Weyl group W. The closure of the B-orbit associated to an element w of the Weyl group is denoted by Xw and is called a Schubert variety in G/P. The classical case corresponds to G = SLn and P being the kth maximal parabolic subgroup of G.